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1. Boundary value problem. 1. Suppose that we are required to 

find two piece-wise analytic functions ‘pI (2) and q2( z) of the complex 

variable z which satisfy on the contour 1, the equations 

‘PI+ (t) = a 0) cpz- w + fl WV ‘P2+ 0) = p (t) ‘PI- V) + f2. (0 (l-1) 

Here, a(t), (3(t), fl(t) and f2( t) are continuous almost everywhere on 

L and satisfy Holder’s condition on the intervals of continuity 

(a(t)$(t) # 0 on L). 

In the general case, Riemann’s boundary value problem for several 

functions can be reduced to a system of Fredholm equations. The most com- 

plete investigations of this problem are presented in a survey article 

of Gakhov [II, and in the monograph of Muskhelishvili [21. In the work 

of Gakhov [31 there is obtained an effective closed solution for the 

case when the matrix coefficient of Riemann’s problem is the product of 

two matrices whose elements are functions that are analytic in regions 

interior and exterior to I!., respectively, except for a finite number of 

points at which these functions may have poles. In the article [ll there 

is given also a closed solution for the case when the coefficient in 

Riemann’s problem is a functionally commutative matrix. The work [41 is 

devoted to some other cases of Riemann’s problem for several functions 

with closed form solutions. 

For a contour that divides the complex plane z into two regions, an 

interior one and an exterior one, the boundary value problem (1.1) is 

solved by means of a simple transformation of the function ql-(z) into 
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the function cp,-(z) and conversely. 

2. Let us assume that the contour L consists of a certain number, n, 
of simple smooth arcs. The functions q,(z) and q2( z) will be assmd to 
be bounded at infinity. 

By a canonic solution of the boundary value problem (1.1) for the 
given closed contour L we shall mean a pair of piece-wise analytic func- 
tions X,(z) and X,(z) satisfying on I, the boundary conditions 

x1+ (4 = u @I xa- (0, x,+ (0 = P 0) Xl’ (t) W) 

and possessing the following properties: 

1) The function X,(Z) has vJ zeros at the points z = ci (i=l, . . ..v~). 

while the function X,(z) has v2 zeros at the points z = di (i = 1, . . . ,v,) . 
At every other point of the finite part of the plane each function is of 
zero order except, possibly, at the points of discontinuity of the co- 
efficients a(t) , and p(t), and at the ends of the arcs L,, the points 
z = aI and t = b, (L = L, + . . . + L,). 

The numbers VI, V2, Ci, di are such that the algebraic system con- 

sisting of the n - 1) equations 

is consistent. Here B,,+(r) denotes the limiting value on the left side 
of the cut of the function 

which is analytic in the exterior of the contour L. 

2) At the ends z = sk and z = b, of the arcs, and at the discontinu- 
ity points of the coefficients a(t) and p(t), the class of functions 
xi(Z) coincides with the given class of functions ~j(Z), j = 1, 2. 

3) At infinity, the function Xi(z) has the highest possible order. 
‘lhe boundary conditions (1.2) are equivalent to the following relations: 

(1.5) 

Hence, for the product of the functions X,(z) and X,(z) we have the 
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linear homogeneous problem of Riemann [2,5I; while the ratio of these 
functions is determined by a nonlinear boundary value problem of the 
Riemann type considered in the work [6]. We thus obtain the canonic solu- 
tion of the boundary value problem (1.1) in the form 

Xl (2) = Jj (2 - ci) fJ (2 - bkJmxk exp {+ Ire (4 -I- r WI] 
i=l k=l 

X,(z) = fi (2 - di) fJ, (2 - bk)-“k exp {+ [ro (z) - r (z)l} 
(1.6) 

i=l k=l 

r0 (4 = & )ln Ia (z) p (z)] -& (1.7) 

r (2) = B5$-\ln[~fjl(~-ci)-2fi (t-d?] B,+($z__r) 
L i==l 

Here the arguments of the functions a(t) and P(t) on the arcs L, 
(k = 1, . ..) n) are selected in such a way that during the continuous 
change of the argument from the point z = ok to the point z = bk the 
singularities of the functions X.(z) at the points z = uk and at the 
points of the discontinuity of tie coefficients a(t) and P(t) will be of 
the type as those of the given class Qj(Z), while at the point z = b, 
the given class is obtained by a choice of an integer Kk (entirely 
analogous to the procedure used for the linear boundary value problem 
for a single function [2,51). If the algebraic system (1.31 has several 
solutions v1 and vq, then, for the fulfillment of the condition (31 of 
the definition, one has to select the smallest solution. Thus, the solu- 
tion of the homogeneous problem (1.2) for the closed contour 15 has been 
reduced to the solution of the algebraic system (1.3). 

Let us now establish the solvability of the algebraic system (1.3) 

for the unknown ci and di when v1 and v2 are positive integers. Indeed, 
from the general theory it is known [2,11 that there exists a solution 
of the homogeneous boundary value problem (1.2) which is of finite order 
at infinity. Ihe general solution of the homogeneous boundary value prob- 
lem (1.2) in the class of functions analytic in the finite part of the 
plane is given by the formulas (1.61 and (1.7) for arbitrary vl, v2, 
and di. ‘Ihe requirement of finiteness of the order of the solution of 

ci 

the homogeneous problem (1.21 at infinity guarantees the fulfillment of 
the conditions (1.31 for same vl, vz, ci and di. We shall consider certain 
cases when the numbers vr, v2, Ci and di can be found by elementary means. 

1) Case when n = 1. The canonic solution of (1.11 exists; hence one 
may set v1 = v2 = 0 in the formulas (1.6) and (1.7). 
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2) Case when the function a(t)&(t) is the boundary value to the left 
of the cuts of L of a function analytic outside the contour LA; this func- 
tion has no zeros in the exterior of L, and is of zero order at infinity; 
furthermore a'(.z)/P+(t> = Gx-(zl/p-(z), where C is some constant. In 
this case condition (1.3) is satisfied if one sets v1 = v2 = 0. 

3. Making use of the canonic solution (1.61, (1.71, satisfying condi- 
tions (1.21, we can write the nonhomogeneous boundary value problem 
(1.1) in the form 

(.$--+ = (g- +. A.@ (1.8) 

The solution of the boundary value problem (1.8) can be expressed as: 

rPj tz> = xj (2) (4% \ [* + *] & - (i=f,4 
i 

(zi =.ci when i= Ia&+ =di whenj= 2) 

&(j) (2) = ypzx + . . . + yp, Pp (2) = a when x<O, Ti’j’ = const 

Rhenv.-K+n - 1 al, the following (v. - K + II - 1) conditions 
have to d fulfilled in order that the nonhdogeneous problem (1.1) may 
have a solution 

fa (4 
1 

zkdz -_- 
X,+-(V) s,+ = 

0 (k=O,l,..., y-X+n-22) (1.10) 

l&is condition (1.10) will hold only if v. - K< 1; as soon as v- - 
~>l, other relations than those of (1.10) have to hold. These relA- 
tions are obtained from the power expansion of the first two terms with- 
in the braces of Formula (1.9) in the neighborhood of infinity, and by 
equating to zero the coefficients of the positive powers of z in this 
expansion. 

2. Basic mixed problem of the plane theory of elasticity 
for a plane with cuts along a straight line. 1, Let us assume 
that the region which is occupied by an elastic body is the entire plane 
cut along n line segments L, = aLbL (k = 1, . . . . nl of the real axis 
x(L = L, + . . . + L,). On one part of the surface of the cuts M there are 
given stresses, on the other part, S, there are given displacements 
(L=MtLs). 

Various particular cases of this problem have been considered by 
Muskhelishvili [?I, and by Sherman [8,91. 
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The stresses and displacements in the plane problem of the theory of 
elasticity for bodies with cuts alon, 0 the x-axis are described by means 
of potentials a(z) and Q(z) according to Muskhelishvili in the following 
way : 

cr, + oy = 4Re CD (z) (2 = 2 + iy) 

-__ 
(Jzr - ic,, = cI> (2) + 52 (i) + (z - c) W(z) 

(2.1) 

Here ax, uy and -r are the components of the stress tensor; u and v 
are the components ofYthe displacement vector along the axes x and y; p 
and v are the translation modulus and Poisson’s coefficient, respectively. 
Hereby, K = 3 + av for 
a planar stress state. 

For large values of 
form L73 

a planar deformation and K = (3 - v)/(l + V) for 

z, the analytic functions a(z) and Q(z) have the 

0 (z) = + (lVl + Iv,) - &;;-‘x, -+ + 0 (z-2) 

Q (2) = + (iv1 + N,) - + (iv, - NJ e2i(r + $TI:‘xY,, f + 0 (z-“) 
(2.2) 

where (X, Y) is the principal vector of the external force applied to 
the edges of all the segments; N, and A’, are the values of the principal 
stresses at infinity; 0: is the angle which the direction corresponding 
to N, makes with the x-axis. 

It is easy to see from the expression (2.1) that the basic problems 
of the planar theory of elasticity for a plane with cuts can be reduced 
to a particular case of the problem considered in the preceding section 
when a(t) and p(t) are piece-wise constant functions. Let us confine our- 
selves to the cases when the points on opposite sides of the cuts where 
the type of the boundary conditions change are symmetrically located with 
respect to the cut segments. 

In this case the boundary value problem in the formulation (2.1) will 
take the form 

Q+ (1) = a (t) Q- @) + fl WI 
Q+ (1) = am1 (t)@ (t) + f2 (t), { 

--i (lEM) 
a (I) = 

l/x (t ES) (2.3) 

(2.4) 
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f * Here u , T , tif and 2P are given stresses, 
displacednts % the edges of the cuts. 

The solution of the boundary value problem (2 

and derivatives of the 

.3) can be found by 
means of Formulas (1.61, (l.?), (1.9) and (1.3) in which the function 
u(t) is determined by Formula (2.3)) while the function P(t) is given by 
the equation 

p (t) = CL-~ (t) ezXin (2.5) 

where n is an integer, which in general changes when the variable passes 
through a point where the boundary conditions change. ‘Ihe argument of 
the function a(t) on the segment I,,, and the integers n, and also the 
numbers K& are chosen in Formulas (1.6), (1.71, (1.9), (1.3) in such a 
way that the function Xj(z), and, hence, also the functions Q(z) and 
Q(z) may have integrable infinite discontinuities at the ends z = ah, 
z = bk of the segments and at the points of discontinuity of the coeffi- 
cient a(t). 

For the determination of the unknown coefficients of the polynomials 

p,(z) in Formula (1.9) one may use [7J the following conditions: 1) the 
condition (2.2) at infinity; 2) the conditions of single-valuedness of 
the displacements; 3) the conditions expressinc the fact that the dis- 
placements take on given values on the cuts. 

Remark. Making use of the formulas of Muskhelishvili [7, Section 1241, 

one can solve in a completely analogous way the basic mixed problem of 
the plaoe theory of elasticity for a plane with cuts along arcs of the 
circumference of a circle. 

2. Let us consider a concrete example. Suppose that we are given the 
semi-infinite cut (- m, t 1). On one part (- m, 0) of it there are known 

the displacements u* = 0, II* = 4 h (h = const), while on the remaining 

part (0, I), which is free of loading, we have (T 
Y 
f=7 

XY 
* = 0. All 

stresses vanish at infinity. In this case, the functions fl(t) and f,(t) 
are zero, and the coefficient a(t) is given by 

{ 

-i 
a (t) = 

(0, +4 
l/x (-0% 0) (2.6) 

For large values of z, the analytic functions CD(z) and Q(z) have the 
form 

CD (2) = 0 (z-l), 52 (2) = 0 (2-l) 

From Formulas (1.61, (1.7) and (1.9) we obtain 

(2.7) 
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r/i-1/1-; iP 

a(zJ=-+Fq= fi+l/l--z L I (C = const) (2.8) 

Q(z) = c [ 
vi- l/l-_Z -@ -1 (p2g) (2.9) 

JfZ((z-1) Jo-+ f/l--z 

fIere, if z - m, we have 

-. 

v/z (2 - 1) = 2 + 0 (f-l), (c:i ~~<J" = e-+ + 0 (2-l) (2.10) 

lbe function 4 (2 - 1) is positive when x > 2. b means of a formula 

of Muskhelishvili [71 the displacements may be written in the form 

-- 
2p (u + iv) = x'p (2) --0 (i) - (2 - 2) CD (2) 

cp (z) = 1 Q (z) dz, o (2) = \ Q (2) dz (2.11) 

In accordance with the boundary conditions, the displacement vector 
will change by 2hi when its terminal point circumscribes the point at 
infinity. 

From this, and from Formulas (2.8), (2.9) and (2.11), we obtain 

(2.12) 

‘Ibe considered case occurs, for example, if one splits an elastic 
body with a perfectly rigid wedge of thickness 2h when the friction co- 
efficient between the wedge and the elastic body is very great (larger 
than 0.5, see [lo]). Hereby, the length of the unstable crack 1 can be 
determined from the condition of Khristianovich on the finiteness of the 
stresses on the edge of the crack, 
[ill 

and from two hypotheses of Barenblatt 

l=_YEC2= LPha 
p KL (i + Y)Z (3 - 4v) 

(2.13) 

Here E is Young’s modulus; K is the modulus of cohesion [llI . 

For the comparison of lengths of cracks, we give the expression of 
the ratio of the length 2 of the crack in the considered case to the 
length 1, of a crack obtained [llI by splitting of an infinitely brittle 
body with a perfectly rigid smooth wedge of thickness 2h 
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